

LNH SPORTS INJURY SYMPOSIUM

Advanced Shoulder Arthroscopy Workshop

NATIONAL SPEAKERS

at Liaquat National Hospital & Medical College

COURSE CHAIRMAN Dr. Khalid Mahmood Shah

COURSE DIRECTOR Dr. M. Sufyan

COURSE CO-ORDINATOR Dr. M. Kazim Rahim

Mr. Ruben Manohara

· Prof. Intikhab Taufiq · Col. Dr. Khalid Masood

Dr. Naveed Juman

· Dr. Idrees Shah

INTERNATIONAL SPEAKERS

LIVE SURGERIES

CADAVERIC SESSIONS

SAW BONE WORK STATIONS

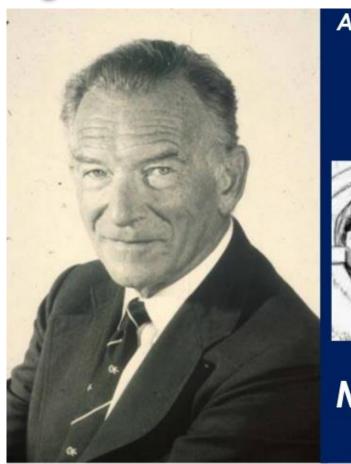
INTERACTIVE LECTURES

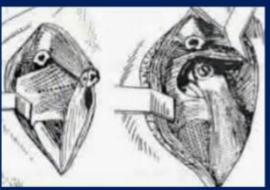
CME ACCREDIATION

Rs. 5,000/- (RESIDENT) Rs. 10,000/- (CONSULTANT)

FOR DETAILS CONTACT DR. MEHROZE ZAMIR 0332-3589863 doc.mz84@gmail.com

MR. ALI QURESHI ali.qureshi5501@gmail.com





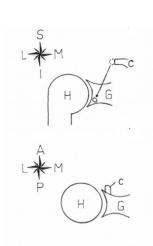
A propos du traitement des luxations récidivantes de l'épaule. Lyon

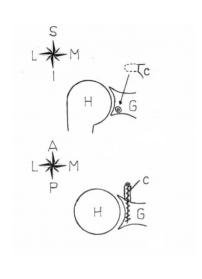
Michel Latarjet

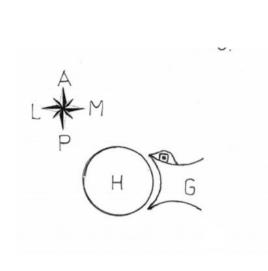
". He was a character in 1000 facets: highly skilled anatomist, skilful surgeon, talented sportsman, accomplished musician, big traveller, and many others... An eclectic life, symbol of an abundant XXth century.

Was He really the First One

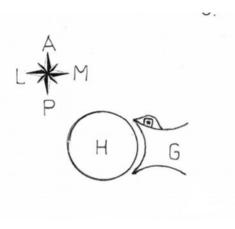
Bristow Procedure


Helfet AJ. Coracoid transplantation for recurring dislocation of the shoulder. *J Bone Joint Surg Br.* 1958 May. 40-B(2):198-202.





Bristow Laterjet Procedure



Eden-Hybbinette procedure

Hybbinette S. De la transplantation d'un fragment osseux pour remédier aux luxations récidivantes de l'epaule; constatations et résultats opératoires. Acta Chir Scand. 1932;71:411–45.

French Modification

G. Walch, P. Boileau

Latarjet-Bristow procedure for recurrent anterior instability

Tech Shoulder Elbow Surg, 1 (2000), pp. 256-261

The Congruent-Arc Latarjet

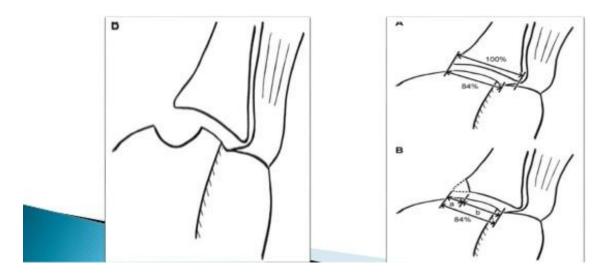
de Beer, Joe M MED, (Orthop)*; Burkhart, Stephen S. MD[‡]; Roberts, Chris Paul MB, BS, FRCS (Tr&Ortho)*; van Rooyen, Karin*; Cresswell, Tim FRCS (Tr&Ortho)*; du Toit, Don F.[†]

Techniques in Shoulder & Elbow Surgery: June 2009 - Volume 10 - Issue 2 - p 62-67 doi: 10.1097/BTE.0b013e31819ebb60 Techniques

Indications for Latarjet

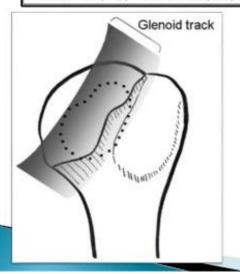
- Greater than 25% loss of inferior glenoid diameter
- Failed prior instability repair with borderline bone loss
- Absent or deficient capsule (from prior surgery, thermal damage, etc.)

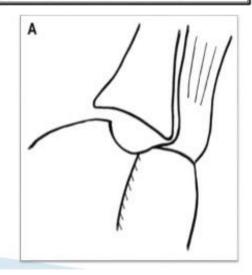
Bipolar Lesions With glenoid bone loss, H-S engages more easily



Contact between the glenoid and the humeral head in abduction, external rotation, and horizontal extension: A new concept of glenoid track

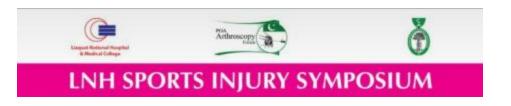
Nobuyuki Yamamoto, MD, ^a Ejji Itoi, MD, ^b Hidekazu Abe, MD, ^a Hiroshi Minagawa, MD, ^a Nobutoshi Seki, MD, ^a Yoichi Shimada, MD, ^a Kyoji Okada, MD, ^a Akita and Sendai, Japan



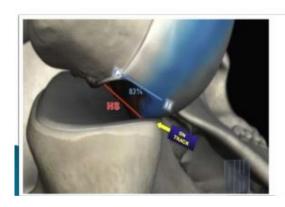


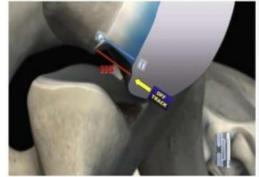
Contact between the glenoid and the humeral head in abduction, external rotation, and horizontal extension: A new concept of glenoid track

Nobuyuki Yamamoto, MD,° Eiji Itoi, MD,^{Is} Hidekazu Abe, MD,° Hiroshi Minagawa, MD,° Nobutoshi Seki, MD,° Yoichi Shimada, MD,° Kyoji Okada, MD,° Akita and Sendai, Japan



Evolving Concept of the Hill-Sachs Lesion: From "Engaging/Non-Engaging" Lesion to "On-Track/Off-Track" Lesion - DiGiacomo, Itoi, Burkhart, Arthroscopy 2014

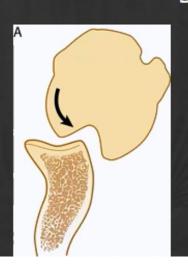




Evolving Concept of Bipolar Bone Loss and the Hill-Sachs Lesion: From "Engaging/Non-Engaging" Lesion to "On-Track/Off-Track" Lesion

Giovanni Di Giacomo, M.D., Eiji Itoi, M.D., Ph.D., and Stephen S. Burkhart, M.D.

Arthroscopy: The Journal of Arthroscopic and Related Surgery, Vol 30, No 1 (January), 2014: pp 90-98



Treating the Engaging H-S by Treating the Glenoid Side

 Lengthen the glenoid articular arc so much that H-S cannot engage

Developing a Treatment Paradigm for Bipolar Bone Loss

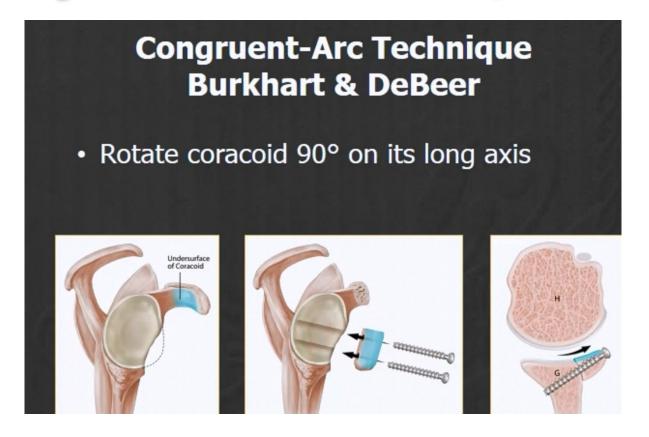
- Group 1 = glenoid defect < 25% plus on-track H-S
 - Arthroscopic Bankart repair (ABR)
- Group 2 = glenoid defect < 25% plus off-track H-S
 - ABR + Remplissage
- Group 3 = glenoid defect ≥ 25% plus on-track H-S
 - Latarjet
- Group 4 = glenoid defect ≥ 25% plus off-track H-S
 - Latarjet

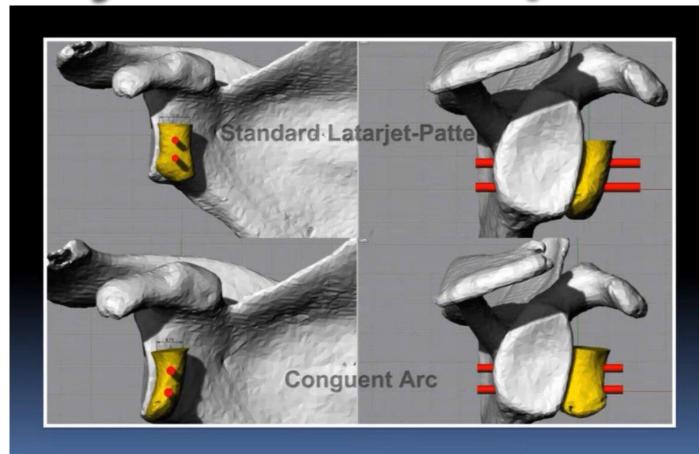
Latarjet Techniques

- Non-congruent arc technique
 - Direct apposition of coracoid to glenoid
 - French technique (Latarjet, Walch)
- Congruent-arc technique
 - Rotate coracoid 90° on its long axis
 - Burkhart-DeBeer technique

Non-Congruent Arc (Walch)

- Direct apposition of coracoid to glenoid
- No rotation of coracoid graft





Walsall Healthcare

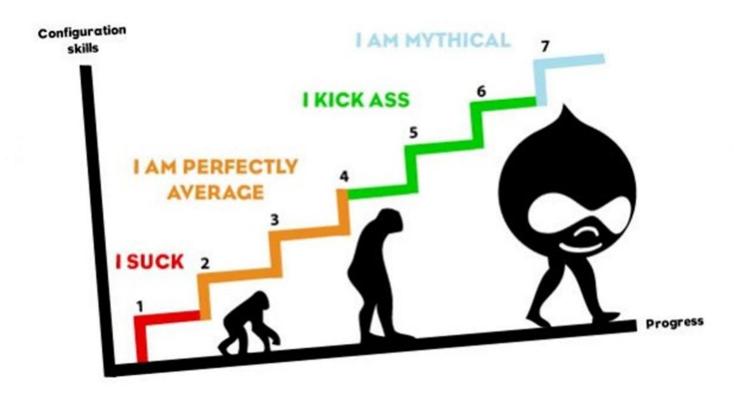
Today's Gold Standard for Significant Bone Loss in Instability Patients: Open Latarjet

- Large bone graft
- Sling effect
- Congruent articular arc
- Glenoid-based graft treats both glenoid and humeral defects to maintain the glenoid track

Open Or Arthroscopic

My Personal Requirements for an Arthroscopic Procedure are:

- Can be done safely
- Can be done reproducibly
- Can be done elegantly without destruction of native tissue


Arthroscopic Latarjet?

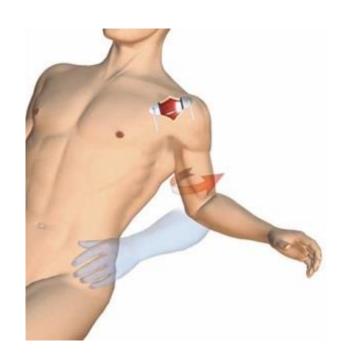
- High risk of N-V injury
- High rate of malposition of graft (20%, LaFosse)
- Current techniques require destruction of capsule and middle 1/3 of subscap to place graft

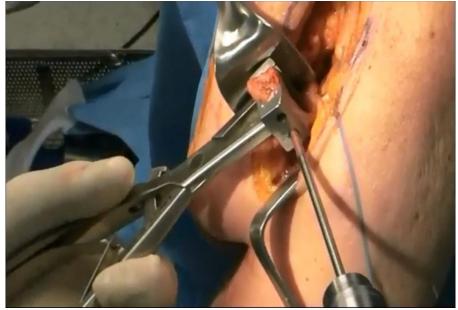
Drupal configuration learning curve. Image by Elin Lagerlöf/NodeOne.

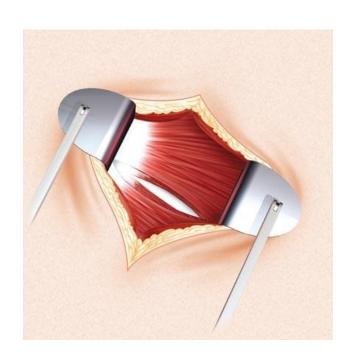
My Practice

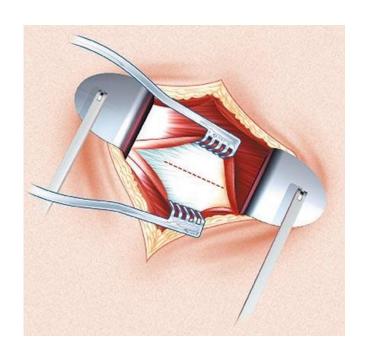
My Practice

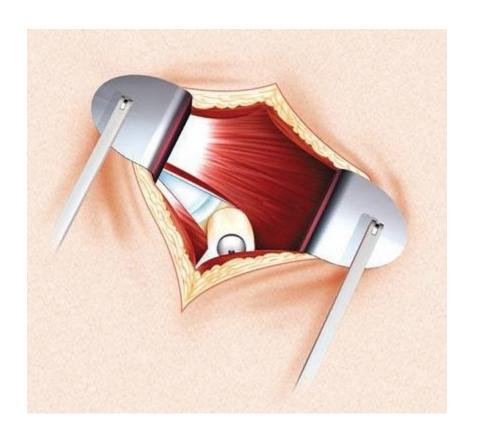
Arthrex Laterjet
Subscap Split
Congruent Arc
2 screws and plate


Open







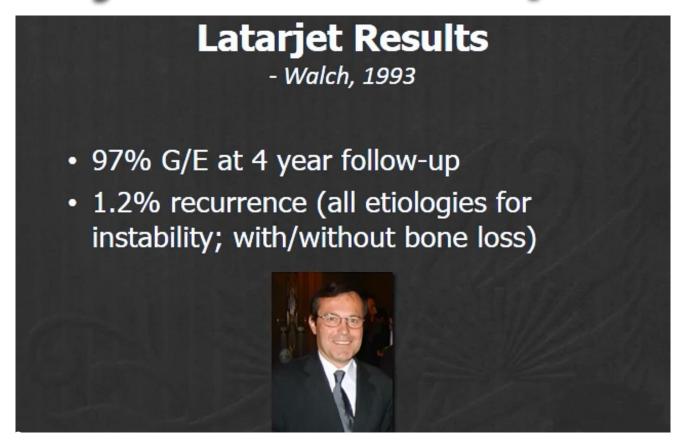






The Sling Effect of the Conjoined Tendon

- Causes posteriorly-directed forces in abd-ER
- Prevents engagement of H-S
- Prevents H-S from overriding glenoid track
- Addresses glenoid and humeral defects with glenoid-based graft only



Results

Latarjet Results

- Burkhart & DeBeer, 2004

- 101 patients, > 25% glenoid loss
- 5% recurrence rate, 5 year follow-up

Snort-term Complications of the Latarjet Procedure

Anup A. Shah, MD, R. Bryan Butler, MD, James Romanowski, MD, Danny Goel, MD, Dimitrios Karadagli, FRCS, and Jon J.P. Warner, MD

Investigation performed at Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts

JBJS 2012

48 Latarjet procedures

Retrospective review

45 shoulders for follow-up (94%)

3 Groups of complications

- Infection
- Instability

Neurologic iniury

Overall rate = 25%

- Infection: 6%

-Instability: 8%

-Neurologic: 10%

Only 2 were permanent

Latarjet 90-Day Complications Rush Experience

133 patients (5 surgeons)

Average age 28.5 ± 11.8 years

Males: 105 (75%)

Prior surgery: 99 (70%)

Complications

- 3 infections (2 required I&D)
- 1 MC nerve injury (required surgery)
- 1 arthritis progression (required surgery)
- 1 recurrent instability (required surgery)
- 1 pain and subjective "stiffness" (required surgery)
- 1 CRPS
- 1 hematoma (resolved without surgery)
- 1 transient ulnar neuritis (resolved)
- 1 additional superficial infection at 104 days

7/10 patients with complications with prior history of surgery

	Number of Procedures Performed	Follow-up Duration	Redislocation Rate
Allain (1998) ¹⁴	95	14 years	0%
Burkhart (2007) ^B	102	5 years	3.9%
Hovelius (1983) ¹⁹	112	2.5 years	6%
Hovelius (2004) ¹⁵	118	15 years	3.4
Singer (1995) ²⁰	14	20 years	0%
Walch (1991) ¹²	354	3 years	1%
WALCH (2000) ⁷	160	3 years	1%

Table 3

Total of complications found in the literature and in CHSJ, the University hospital The data are presented as number and percentage of individuals that suffered the complication.

	Literature (962) n (%)	CHSJ (34) n (%)
Instability		
Redislocation	25 (2.6%)	1(2.9%)
Subluxation	18(1.9%)	-
Positive apprehension test	39(4%)	1 (2.9%)
Radiographic complications		
Pseudarthro-	45 (4.7%)	2(3.2%)
sis/nounion/fibrous union		
Graft dislocation	20(2%)	-
Graft fracture	5(0.5%)	-
Osteolysis/graft reabsorption	36(3.7%)	2(5.8%)
Arthrosis	122(12.7%)	1 (2.9%)
Screw related complications	29(3%)	6(16.1%)
Intraoperative complications	-	2(5.8%)
Functional complications		
Range of motion limitation	389 (40.4%)	15 (44.1%)
Loss of strength	20(2%)	
Pain	118(12.3%)	4(117%)
Hematoma	9(0.9%)	1(2.9%)
Infection		
Superficial	11(1.1%)	-
Deep	1 (0.1%)	-
Neuromuscular/vascular complications	35 (3.6%)	5(14.7%)
Revision surgery	34(3.5%)	4(11.7%)

My Results
55 cases in 12 years
No infection
No instability

My Results 55 cases in 12 years Some stiffness long-term 1 failure

needed removal of implant

